Mathematics

DO NOT OPEN THIS BOOKLET UNTIL INSTRUCTED.

Read the instructions on the ANSWER SHEET and fill in your NAME, SCHOOL and OTHER INFORMATION.
Use a pencil. Do NOT use a coloured pencil or a pen.
Rub out any mistakes completely.

You MUST record your answers on the ANSWER SHEET.

Mark only ONE answer for each question.
Your score will be the number of correct answers.
Marks are NOT deducted for incorrect answers.

There are 5 MULTIPLE-CHOICE QUESTIONS (1–5).
Use the information provided to choose the BEST answer from the four possible options.

On your ANSWER SHEET fill in the oval that matches your answer.

You may use a ruler and spare paper.
You are NOT allowed to use a calculator.
1. The diagram below represents the products of \((x + 5)\) and \((3x + 2)\).

\[\begin{array}{c|c|c|c} x & 3x & 2 \\ \hline x + 5 & \ & \end{array} \]

What product is represented by the shaded rectangle?

(A) \(2x\)
(B) \(6x\)
(C) \(x^2\)
(D) \(3x^2\)

2. Jules has a package gift-wrapped, as shown.

What is the volume, in \(\text{cm}^3\), of the package?

(A) \(50\)
(B) \(300\)
(C) \(1400\)
(D) \(3000\)

3. During 2001, Australia exported goods to a total value of $123,000 million. The graph shows the percentage of these goods exported to different parts of the world.

What was the value, in millions of dollars, of the goods exported to China?

(A) \(7380\)
(B) \(12300\)
(C) \(14760\)
(D) \(23370\)
4. Jane was tossing a coin, but one side of the coin was weighted more heavily than the other.

Here are the results she obtained.

<table>
<thead>
<tr>
<th>Tosses</th>
<th>Heads</th>
<th>Tails</th>
</tr>
</thead>
<tbody>
<tr>
<td>100</td>
<td>67</td>
<td>33</td>
</tr>
<tr>
<td>500</td>
<td>286</td>
<td>214</td>
</tr>
<tr>
<td>1000</td>
<td>581</td>
<td>419</td>
</tr>
<tr>
<td>5000</td>
<td>2989</td>
<td>2011</td>
</tr>
</tbody>
</table>

Based on her results, which of these is the best estimate of the probability of getting a head in a single toss of Jane’s coin?

(A) 0.4
(B) 0.5
(C) 0.6
(D) 0.7

5.* In the diagram H represents the position of a hawk hovering above the ground, and M the position of a mouse on the ground.

The mouse moves to a new position N, which is 50 m from position M.

What is the maximum possible distance, in m, from H to the new position N correct to the nearest whole number?

* Free response questions are only applicable to some assessments.
4. Jane was tossing a coin, but one side of the coin was weighted more heavily than the other. Here are the results she obtained.

Based on her results, which of these is the best estimate of the probability of getting a head in a single toss of Jane's coin?

(A) 0.4
(B) 0.5
(C) 0.6
(D) 0.7

5.

In the diagram, H represents the position of a hawk hovering above the ground, and M the position of a mouse on the ground.

M

H

50

0

50

100

150

200

250

0

50

100

150

200

250

ALL MEASUREMENTS IN METRES

The mouse moves to a new position N, which is 50 m from position M.

What is the maximum possible distance, in m, from H to the new position N correct to the nearest whole number?
HOW TO FILL OUT THIS SHEET:

1. **USE A PENCIL**
2. Print your details clearly in the boxes provided.
3. Make sure you fill in only one oval in each column.
4. Rub out all mistakes completely.
5. Do not use a coloured pencil or pen.

<table>
<thead>
<tr>
<th>FIRST NAME to appear on certificate</th>
<th>LAST NAME to appear on certificate</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Are you male or female?**
 - Female
 - Male

- **Does anyone in your home usually speak a language other than English?**
 - Yes
 - No

- **School name:**
 - ____________________________

- **Town / Suburb:**
 - ____________________________

- **Today’s date:** __________ / __________ / ________
 - **Postcode:** __________
TO ANSWER THE QUESTIONS

MULTIPLE CHOICE
Questions 1 to 35

Example: 4 + 6 =

(A) 2
(B) 9
(C) 10
(D) 24

The answer is 10, so fill in the oval ☐, as shown.

START

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>☐</td>
<td>☐</td>
<td>☐</td>
</tr>
</tbody>
</table>

USE A PENCIL
DO NOT USE A COLOURED PENCIL OR PEN

For details on how we handle your personal information, please see our Privacy Policy on our website at unswglobal.unsw.edu.au
<table>
<thead>
<tr>
<th>QUESTION</th>
<th>KEY</th>
<th>SOLUTION</th>
<th>STRAND</th>
<th>LEVEL OF DIFFICULTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A</td>
<td>The shaded rectangle has a side of 2 and a side of x. Therefore, the product of these two sides is $2x$.</td>
<td>Algebra and Pattern</td>
<td>Easy</td>
</tr>
<tr>
<td>2</td>
<td>D</td>
<td>Volume of a box = length \times width \times height $V = 30 \times 10 \times 10$ $V = 3000 \text{ cm}^3$</td>
<td>Measurement</td>
<td>Easy</td>
</tr>
<tr>
<td>3</td>
<td>A</td>
<td>6% of the total products are exported to China. 6% of 123 000 million = 0.06 \times 123 000 million = 7380 million</td>
<td>Chance and Data</td>
<td>Easy</td>
</tr>
<tr>
<td>4</td>
<td>C</td>
<td>Experimental Probability equals: $\frac{\text{Number of times an event has occurred}}{\text{Number of trials}}$ Applying this formula: $\frac{67 + 286 + 581 + 2989}{100 + 500 + 1000 + 5000} = 0.59$ Therefore, the best estimate is 0.6.</td>
<td>Chance and Data</td>
<td>Medium</td>
</tr>
</tbody>
</table>
Apart from reading 3D coordinates the main mathematics in this question is Pythagoras’ Theorem.

If we look at the mouse and the hawk from above we would see this:

The line shows the hawk’s path. The distance along the ground of this path (the horizontal component) is $\sqrt{100^2 + 50^2}$. This is about 111.8 m. The mouse runs 50 m away from the hawk to a new position 'N'. The mouse can run in any direction but wants to maximise the distance from the hawk. This means he should run in the same direction as the line NH in the diagram below.

Along the ground this gives a distance of $111.8 + 50 = 161.8$ m.

This is just the horizontal distance. Fortunately for the mouse, the hawk is further away than that because it is hovering above the ground at a height of 100 m.

We can show this on a new diagram from a different point of view.

We can now use Pythagoras’ Theorem again to find the distance from the hawk to the mouse.

$\sqrt{161.8^2 + 100^2}$

This gives an answer of 190.2 m. To the nearest whole number this is 190.

Comment
The underlying mathematics in this problem is not very difficult and boils down to two instances of Pythagoras’ Theorem. As a problem, though, the question is more difficult. Students have to realise that Pythagoras’ Theorem is the appropriate piece of mathematics to use and have to extract information presented in an unusual way. Also some insight is required to understand in what direction the mouse should run.
Level of difficulty refers to the expected level of difficulty for the question.

<table>
<thead>
<tr>
<th>Level</th>
<th>Difficulty</th>
</tr>
</thead>
<tbody>
<tr>
<td>Easy</td>
<td>more than 70% of candidates will choose the correct option</td>
</tr>
<tr>
<td>Medium</td>
<td>about 50–70% of candidates will choose the correct option</td>
</tr>
<tr>
<td>Medium/Hard</td>
<td>about 30–50% of candidates will choose the correct option</td>
</tr>
<tr>
<td>Hard</td>
<td>less than 30% of candidates will choose the correct option</td>
</tr>
<tr>
<td>Region</td>
<td>Year/Level</td>
</tr>
<tr>
<td>------------------------------</td>
<td>-------------------</td>
</tr>
<tr>
<td>Australia</td>
<td>Year 12</td>
</tr>
<tr>
<td>Brunei</td>
<td>Pre-University 2</td>
</tr>
<tr>
<td>Egypt</td>
<td>Year 12</td>
</tr>
<tr>
<td>Hong Kong</td>
<td>Form 6</td>
</tr>
<tr>
<td>Indian Subcontinent</td>
<td>Class 12</td>
</tr>
<tr>
<td>Indonesia</td>
<td>N/A</td>
</tr>
<tr>
<td>Malaysia</td>
<td>Upper 6</td>
</tr>
<tr>
<td>Middle East</td>
<td>Class 12</td>
</tr>
<tr>
<td>New Zealand/Pacific</td>
<td>Year 13</td>
</tr>
<tr>
<td>Singapore</td>
<td>Junior College 1</td>
</tr>
<tr>
<td>Southern Africa</td>
<td>Grade 12</td>
</tr>
</tbody>
</table>

1. All international schools registered with UNSW Global which have an 8-digit school code starting with 46 should sit the papers according to the Australian year levels.
2. Indian Subcontinent Region: India, Sri Lanka, Nepal, Bhutan and Bangladesh.
3. Middle East Region: United Arab Emirates, Qatar, Kuwait, Saudi Arabia, Bahrain, Oman, Turkey, Lebanon, Tunisia, Morocco, Libya, Algeria, Jordan and Pakistan.